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M O D E L I N G  E L E C T R O H Y D R O D Y N A M I C  F L O W S  

IN S L I G H T L Y  C O N D U C T I V E  LIQUIDS 

I. L. Pankrat 'eva  and V.  A. Polyanskii  UDC 532.5:537.5 

This article is concerned with mathematical modeling of electrohydrodynamic (EHD) flows in a slightly 
conductive liquid exposed to an electric field and interacting with conducting and dielectric walls of the 
containing vessel. We determined the volt-ampere characteristic of a parallel-plate electrode system and the 
structure of liquid layers in proximity to the electrodes in the case of strong electric fields. The model proposed 
is shown to be adequate to the actual bipolar structure at electrodes [1, 2]. The structure is as follows: the 
layer in contact with a live electrode is of like polarity, the next layer has opposite polarity, and the third 
is neutral. Such a structure is responsible for the nonuniform pressure distribution in the liquid close to the 
electrodes. This, in turn, may bring the initially stationary liquid into motion inside the closed space. 

The relaxation time of a space charge in a slightly conducting medium is of the same order or exceeds 
the characteristic hydrodynamic times. Thus, a space charge can appear in the medium, making it capable 
of electric-field-controlled motion. There are many technological and engineering applications based on the 
use of the interaction between a slightly conducting medium and an external electric field. An example is the 
so-called EHD converters intended for direct conversion of the electric-field energy into kinetic energy or the 
internal energy of the working agent. Among these are EHD pumps for the transfer of slightly conducting 
liquids such as hydrocarbon fuel or oil. Having no moving parts, these pumps are highly reliable and durable. 
They can be used as metering pumps since their delivery is continuously electronically adjustable even at 
very low magnitudes. Such a metering pump combined with an EHD sprayer can successfully replace the 
conventional carburetor in a computer-controlled engine. 

Another promising device is an EHD compressor for refrigerating machines [3]. It also has no moving 
parts, is noiseless and small in size. Its most valuable advantage is the capability of handling ecologically safe 
coolants free of freon. 

The following two important technological applications of EHD compressors should also be noted: the 
coating of complex-shaped surfaces by jets of powders charged in corona discharge, and the spray treatment 
of plants with pesticides in a strong electric field to provide sufficiently uniform distribution of charged drops 
over both (windward and leeward) sides of the leaves. Electric fields can successfully be used for removing 
bubbles from a liquid or for intensification of the coagulation of water drops suspended in a hydrocarbon 
liquid. EHD flowmeters for organic liquids [4] and lubricant-quality analyzers [5] are of interest too. 

The possibility of using different EHD processes in numerous useful applications, some of which are 
mentioned above, necessitates the development of appropriate methods of mathematical modeling of flows in 
slightly conducting liquids interacting with external electric fields. The development of these methods involves 
two principal problems. 

One of them arises from the fact that the media used as the working agent in an EHD-device is a 
technical-grade liquid dielectric. It is usually not purified and, therefore, is an electrically neutral liquid- 
carrier with a small indefinite amount of different electrolytes dissociated into positive and negative ions 
therein. The ion constitution of the working agent and, thus, the kinetic and transfer properties of its charged 
ingredients are not known exactly. Moreover, the medium is likely to vary in composition during experiments, 
e.g., because of absorption of water vapor from the atmosphere. These considerations call for the development 
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of a model having a set of effective control variables that  describe the kine~l~ and transfer properties of a 
whole group of charged particles of different sorts rather than individually for each sort. Groups of particles 
may also differ in the nature of the interaction with the conducting walls (electrodes). 

The other problem springs from the difficulty of describing that  interaction. A space charge is shown 
[6] to appear in the medium mainly due to the electrochemical interaction between the medium components 
and the metal  electrode surface in strong electric fields. The process proceeds simply as follows. Every 
neutral molecule approaching negative (cathode) or positive (anode) metal electrodes takes an electron (at 
the cathode) or gives it (at the anode), thus becoming an ion of the same polarity as the electrode. The 
ions formed in the process are repelled from the like-charged surface and injected into the liquid. Due to 
diffusion, electric-field-forced drift, or convective flows in the transfer liquid, ions from the liquid get on the 
unlike-charged electrode where recombination takes place. 

The discussions [7, 8] concerning injection of ions into liquid by electrodes in a strong electric field 
are based on the so-called phenomenological models, the parameters of which are chosen by comparing the 
actual and calculated volt-ampere characteristics of the medium in the electrolytic cell. Measurements were 
also carried out to determine the velocity profiles of flows in plane channels with a wire-plane electrode 
configuration [9, 10]. The model discussed below covers many of the effects found in EHD flows. 

We will consider a four-component medium which consists of a neutral liquid-carrier (its individual 
molecules) containing three sorts of ions. The first of these are positive ions formed by electrochemical reactions 
alone of the electrodes, e.g., at the anode, followed by injection of the formed ions into the liquid. The other 
two sorts of ions form in the bulk of the solution by the dissociation of impurities into positive and negative 
ions. We assume that  ions of these three sorts recombine at the metallic electrode surface. 

Let ni denote the concentration of/-sort ions (i = 1, 2, 3), let 1 correspond to positive ions injected into 
the volume by the anode surface, and 2, 3 to positive and negative ions formed in the volume by dissociation. 
The mobility factor bi and diffusion rate Di (i = 1, 2, 3), space dissociation rate w, and space recombination 
rate a characterize the kinetic and transfer properties of the ions. 

The equations in the EHD approximation to describe the distribution of the ion concentration hi, 
electric potential r electric intensity E, velocity u, and pressure p of an incompressible liquid are as follows 
[6]: 

Onl 
+ div (nlU1) = 0; (1) 

Ot 

Oni 
0----/- + div (nlUi) = w - v m 2 n 3 ,  i = 2, 3; (2) 

n i U i  = n i u  - D i  grad ni  ~ bini  grad % i = 1 - 3; (3) 

r = --47rq, E = - g r a d  % q = e ( n l  + n2 -- n3); (4) 

( 0 u  ) d i v u = 0 ,  p -~-~-+uVu = - g r a d p + q E + # A u ,  (5) 

where Ui is the velocity of the i-sort component,  q is the electric space density, e is the dielectric constant of 
the liquid, e is the proton charge, p is the liquid density, and # is the dynamic viscosity factor. Equations (1)- 
(5) assume that  the injected ions are not involved in the space electrochemical process. In the absence of 
an electric field the liquid flow is entirely quasi-neutral, except for a thin diffusion layer at the electrodes, 
where charge separation may occur. The pulse equation for the medium as a whole takes into account only 
the Coulomb force. In the presence of a space charge, polarization forces were shown to have no significant 
effect on flows in the media under discussion. The  dissociation rate w on the right-hand side of the continuity 
equations (2) can depend on the electric intensity in the case of strong electric fields [11]. 

In (1)-(5) it is assumed that  the degree of ionization of the medium is small (dissociation has no 
significant effect on the concentration of neutral particles nl in the medium). Therefore, there is no continuity 
equation for na in system (1)-(5). It should be noted that  in the case of a highly nonuniform electric field, a 
space charge may appear in the medium as a result of dissociation of neutral molecules into ions by the field 
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even if ions are not injected by electrodes [12, 13]. 
Let us formulate boundary conditions. The electrochemical process of formation and disappearance of 

ions simultaneously proceed on the metallic charged electrode surfaces. This process can be described by a 
balance relationship between the resultant flow of / -sor t  ions from the medium and the difference between 
the flows of these ions appearing and disappearing on the wall. For component flows normal to the wall, the 
equations take the following form: 

n i U i  �9 v = aoi + a l i E  - k i n i ,  i = 1-3, (6) 

where v is the vector normal to the electrode surface, ki is rate constant of the ion surface recombination, aoi 

and a l i  are the coefficients of the expansion of the ion flow injected into the liquid by the electrode surface 
in terms of powers of the electric intensity module. The coefficients for dielectric walls on the right-hand side 
of Eq. (6) should all be set equal to zero. 

Boundary conditions placed on the hydrodynamic variables are conventional for problems of viscous 
incompressible liquid flows. 

There are a number of characteristic time constants in EHD flow development problems: 

L L e 
re = boEo '  rh uo rr - -  47r~0' rch = (W0Ot0) -1/2, 

L 2 
ra = -~o '  ao = 2enobo,  no = ( w o / a o )  1/~. 

Here the subscript 0 denotes the characteristic quantities mentioned above, or0 is the quasi-neutral medium 
conductance, L is the characteristic dimension in the problem, and the no is the quasi-neutral concentration 
determined from the condition of chemical equilibrium of the space dissociation of molecules into ions. The 
physical meaning of the characteristic time constants is as follows: re is the electric-field-forced drift time, rh 

is the hydrodynamic time, rr is the space-charge relaxation time, rd is the diffusion time, rch is the chemical- 
equilibrium time. With the help of the Langevin relation s o  = 87rbo/e, it can be shown that the time constants 
rr and rch are the same. A change to dimensionless variables in the initial equations (1)-(5) and boundary 
conditions (6) give rise to dimensionless quantities: 

r~ R q = r e  & =  ~E02 
6 = rrra ' R d  = --,rh --rh ' 8~rpu2o" 

Let us estimate them for some slightly conducting liquid, transformer oil, for example, using the 
following values: 

p = 876 kg/m 3, Do = 10 -9 m2/sec, cr0 = 2.54- 10 -11 S/m, 

no = 2.1015 m -a,  b0 = 3.96- 10 -s  m2/(V �9 e = 2.2, (7) 

L = 0 . 0 0 5 m ,  w0=2 .6 .1015m -3 - sec  -1, s 0 = 6 . 5 " 1 0  -18 m a-sec  -1. 

The characteristic time constants under these conditions are as follows: rr = 0.8 sec, rd = 2.5- 104 sec, 
re = 0.04 sec at electric intensity E0 = 3000 kV/m, and rh = 0.05 sec at flow speed u0 = 0.1 m/sec. It is thus 
seen that the dimensionless quantities ~ << 1, Ra >> 1, P~ ~ 1, Se >/1. 

The quantity 6 determines the contribution of diffusion to the total ion transfer. Since it is too 
small, diffusion is of importance only in thin layers with large gradients of charged-particle concentration 
(in particular, near the walls). Beyond the range of large gradients, ion transfer is due to electric-field-forced 
drift and convective flows in the liquid. The contributions of these two processes are of the same order (because 
Rq is close to unity). 

Of great importance in EHD problems [6] is also the dimensionless quantity 8 = a o o / n o b o E o ,  where 
a00 is the characteristic value of the flow of ions emerging at the electrode surface. The quantity 8 represents 
the ratio of this flow to the characteristic ion flow caused by the field-forced drift. If 0 < 1, all ions injected 
into the liquid by the electrode are completely removed from the surface into the volume under the action of 
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the electric field, ff 0 > 1, the field has no time for complete removal of the emerging ions from the surface, 
and they are accumulated in a layer near the electrode. Estimates of a00 and the characteristic rate of surface 
recombination k00 can be obtained from the results of experiments in [t4] on the heptane flow in copper and 
stainless-steel tubes at low potentials: a00 = 2. 1012m -2 �9 sec -1, k00 = 10 -3 m/sec. 

Below, we give the results of a numerical simulation of processes developed in a constant cross-section 
area channel with two plane parallel electrodes filled with a low-conducting liquid after a potential difference 
is turned on. 

Let the characteristic dimension of the electrodes placed crosswise in the channel greatly exceed the 
interelectrode gap L. In this case, there is no appreciable electric-field component other than E, normal to 
the electrode surface, and all variables depend only on time and the electrode-normal coordinate x. The 
liquid between the electrodes is initially assumed motionless. Hence the channel may be considered as an 
electrolytic cell which is commonly used in measurements of dielectric-liquid conductance. The calculations 
for components with subscripts 2 and 3 use the values of (7). It is assumed therewith that b2 = b3 = b0, 
bl < b0, and that ions of any sort can be absorbed by the electrodes, but the ions nl are the only ones to be 
injected (by the anode only). 

Figures 1 and 2 show distributions of the space-charge density and electric intensity near the anode 
after all transients have completed. The potential difference is equal to 5.000kT/e, and the injected-ion 
mobility ba = 0.05b0. The abscissa is the x/L ratio (of the distance x from the anode to the interelectrode 
gap L = 0.5 cm). Plotted on the ordinate are the q/eno ratio and electric intensity in kT/eL units, where 
q is the space-charge density. The region near the anode has a complicated bipolar structure extending far 
outside the near-electrode diffusion layer. A thin positive-charged diffusion layer about 0.005L in thickness 
with great ion-concentration gradients is adjacent immediately to the anode. The scale of Fig. 1 allows only 
the extremes of q therein to be plotted (in the form of dots on the ordinate). The second layer is considerably 
thicker, about 0.08L. The Coulomb forces in the positively charged layer repel the liquid from the electrodes. 
Since the liquid is incompressible and immovable, tensile stresses should occur in it. Note that the existence 
of regions with tensile stresses can lead to various cavitation effects and, hence, to a decrease in the dielectric 

strength of the liquid. 
Next is a negatively charged layer, about 0.35L in thickness; the Coulomb forces acting therein tend 

to attract the liquid to the anode. The medium between that layer and the layer close to the cathode is 
quasineutral. The cathode is assumed not to inject ions, and the layer closest to it is positively charged. 

With the above space-charge distribution, the electric intensity is a nonmonotone function (Fig. 2). 
The characteristic dimensions of the structure obtained are in good agreement with experimental data [1, 2]. 
It should be noted that important conditions for the formation of a bipolar structure at the anode are the 
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presence of a nonequilibrium electrochemical process with the participation of the ions n2, n3 in the medium 
and the injection of ions nl (less mobile than n2 and n3) by the anode. If the space reaction is frozen, the 
bulk of the liquid quickly gets rid of ions n2 and n3, and the entire interelectrode gap, except for the very 
thin diffusion layer at the electrodes, is filled with the injected ions hi. Also, a bipolar structure extending 
outside the diffusion layer does not form when bl > b0. Thus, the processing of experimental data with the 
use of the proposed model provides important information about the properties of a liquid dielectric. 

The nonuniform distribution of the electric intensity results in a similar (nonuniform) pressure 
distribution. As follows from Eq. (5), the ratio of the liquid pressure p00 to the pressure outside the 
interelectrode gap varies in proportion to the square of the dimensionless electric intensity in the case o[" 
a motionless liquid: 

 (kT) 2 
p -  1 = SepE 2, Sep - 8~re2p00L2 �9 (8) 

Equation (8) and Fig. 2 show that the pressure has a local peak near the anode. The existence of local 
pressure peaks in the region of injection of charged particles is also typical of two-dimensional EHD flows in 
complex-shaped channels [15]. 

Let the electrodes now be permeable to liquid, and the medium in the channel be movable under the 
action of the Coulomb forces. We consider the development of the process in the interetectrode space after 
switching on a potential difference. The progressing convective motion in the channel substantially affects the 
ion concentration distribution. Figures 3 and 4 show the space-charge density and electric intensity profiles 
for the following three instants of time: (1) 0.911rT, (2) 1.98TT, (3) 2.88T~. The voltage applied equals 
104kT/e,  the injected-ion mobility bl = 0.1b0. For any time moments longer than ~ 1.5Tr, the ratio of the 
liquid speed to the ion-drift characteristic speed boE is of the order of unity. Along with this, distributions 
created initially at the electrodes, including the diffusion layer formed at the anode, start to drift in the 
form of peculiar lonely waves from the anode to the cathode. In this nonstationary process, regions of steep 
gradients (not visible in the figures) are found not only in thin boundary layers at the electrodes, but also 
far away from them. The pattern obtained is not periodic in time. After the waves arise at the cathode, 
the steady-state distribution of the parameters is gradually established with a negative space charge at the 
anode and a positive space charge at the cathode. The total charge in the interelectrode gap is positive, 
and the Coulomb forces are balanced out by the resistance of the channel wall, which is taken into account 
in the hydraulic approximation. Effects similar to the described wave motions were observed in experiment 
[16], in which a distortion of the interference bands in an electrolytic cell was detected after voltage was 
turned on. Some time later, the original interference pattern was restored. Interpretation of the results of the 
experimental transient-current measurements in an electrolytic cell after turning the voltage on and off and 

51"/ 



tg Js 

o ~ L' g~ 

Fig. 5 

after fast reversal of the electrodes is also associated with the motion of the concentration wave-fronts [17]. 
As was noted above, electrolytic cells are used to measure the conductivity of liquids over the linear 

section of the steady-state volt-ampere characteristic (VAC) at a low applied voltage. At the same time, 
experiments show [18] that in a wide range of voltages (up to the break-down voltage), the VAC can be 
divided into several characteristic sections. This provides additional important information about the medium 
parameters. 

Figure 5 shows the cell VAC calculated within the framework of the discussed model and drawn on 
the bilogarithmic scale under the assumption that the medium is motionless and the ions of all sorts have the 
same mobility. Each point on the plot corresponds to the end of transient processes in the cell. The abscissa is 
the ratio of the dimensionless potential ~ to kT/e,  and the ordinate is the ratio of the dimensionless current 
density Js to aokT/eL. 

The VAC can be divided into four sections. The conductivity of the cell a0 can be calculated for 
low potentials, using the slope of linear section 1 (equal to unity). It is governed by the ion quasineutral 
concentration in the liquid in the absence of field, o'o = jstL/~w (Js~ is the measured dimensional current 
density within the linear section, and ~ ,  is the dimensional potential difference). Section 2 is transitional 
between the linear section 1 and section 3. This corresponds to the saturation current at intermediate 
values of the potential. With very simplifying assumptions introduced into the problem, the dimensional 
saturation current density is as follows: jsn = 2~ra2oL/ebo. The effective mobility factor b0 can easily be 
determined therefrom, knowing a0 and using the measured value of jsn. A numerical solution allows one to 
find the inaccuracy of the given relations for b0 and ~0. The liquid conductivity at high applied potential 
differences (section 4) is governed by the ion injection. The character of the voltage--current relationship 
enables therewith useful information about the injection quantities to be obtained. It should be noted, however, 
that interpretation of the experimental data for this section seems to be impossible, since the convective ion 
transfer is not taken into account. 
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